Epidemiology and Diagnosis of Anterior Cruciate Ligament Injuries

Published:October 04, 2016DOI:


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Clinics in Sports Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Gornitzky A.L.
        • Lott A.
        • Yellin J.L.
        • et al.
        Sport-specific yearly risk and incidence of anterior cruciate ligament tears in high school athletes: a systematic review and meta-analysis.
        Am J Sports Med. 2015; ([Epub ahead of print])
        • Ingram J.G.
        • Fields S.K.
        • Yard E.E.
        • et al.
        Epidemiology of knee injuries among boys and girls in US high school athletics.
        Am J Sports Med. 2008; 36: 1116-1122
        • Powell J.W.
        • Barber-Foss K.D.
        Injury patterns in selected high school sports: a review of the 1995-1997 seasons.
        J Athl Train. 1999; 34: 277
        • Risberg M.A.
        • Lewek M.
        • Snyder-Mackler L.
        A systematic review of evidence for anterior cruciate ligament rehabilitation: how much and what type?.
        Phys Ther Sport. 2004; 5: 125-145
        • Joseph A.M.
        • Collins C.L.
        • Henke N.M.
        • et al.
        A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics.
        J Athl Train. 2013; 48: 810-817
        • Beynnon B.D.
        • Vacek P.M.
        • Newell M.K.
        • et al.
        The effects of level of competition, sport, and sex on the incidence of first-time noncontact anterior cruciate ligament injury.
        Am J Sports Med. 2014; 42: 1806-1812
        • Arendt E.
        • Dick R.
        Knee injury patterns among men and women in collegiate basketball and soccer NCAA data and review of literature.
        Am J Sports Med. 1995; 23: 694-701
        • Boden B.P.
        • Dean G.S.
        • Feagin J.A.
        • et al.
        Mechanisms of anterior cruciate ligament injury.
        Orthopedics. 2000; 23: 573-578
        • Mountcastle S.B.
        • Posner M.
        • Kragh J.F.
        • et al.
        Gender differences in anterior cruciate ligament injury vary with activity epidemiology of anterior cruciate ligament injuries in a young, athletic population.
        Am J Sports Med. 2007; 35: 1635-1642
        • Wright R.W.
        • Dunn W.R.
        • Amendola A.
        • et al.
        Risk of tearing the intact anterior cruciate ligament in the contralateral knee and rupturing the anterior cruciate ligament graft during the first 2 years after anterior cruciate ligament reconstruction: a prospective MOON cohort study.
        Am J Sports Med. 2007; 35: 1131-1134
        • Hewett T.E.
        • Myer G.D.
        • Ford K.R.
        • et al.
        The 2012 ABJS Nicolas Andry Award: the sequence of prevention: a systematic approach to prevent anterior cruciate ligament injury.
        Clin Orthop Relat Res. 2012; 470: 2930-2940
        • Borchers J.R.
        • Pedroza A.
        • Kaeding C.
        Activity level and graft type as risk factors for anterior cruciate ligament graft failure: a case-control study.
        Am J Sports Med. 2009; 37: 2362-2367
        • Kaeding C.C.
        • Pedroza A.D.
        • Reinke E.K.
        • et al.
        Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON Cohort.
        Am J Sports Med. 2015; 43: 1583-1590
        • Mariscalco M.W.
        • Flanigan D.C.
        • Mitchell J.
        • et al.
        The influence of hamstring autograft size on patient-reported outcomes and risk of revision after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) Cohort Study.
        Arthroscopy. 2013; 29: 1948-1953
        • Krosshaug T.
        • Nakamae A.
        • Boden B.P.
        • et al.
        Mechanisms of anterior cruciate ligament injury in basketball video analysis of 39 cases.
        Am J Sports Med. 2007; 35: 359-367
        • Olsen O.-E.
        • Myklebust G.
        • Engebretsen L.
        • et al.
        Injury mechanisms for anterior cruciate ligament injuries in team handball a systematic video analysis.
        Am J Sports Med. 2004; 32: 1002-1012
        • Paterno M.V.
        • Schmitt L.C.
        • Ford K.R.
        • et al.
        Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport.
        Am J Sports Med. 2010; 38: 1968-1978
        • Hewett T.E.
        • Myer G.D.
        • Ford K.R.
        • et al.
        Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes a prospective study.
        Am J Sports Med. 2005; 33: 492-501
        • Powers C.M.
        The influence of abnormal hip mechanics on knee injury: a biomechanical perspective.
        J Orthop Sports Phys Ther. 2010; 40: 42-51
        • Imwalle L.E.
        • Myer G.D.
        • Ford K.R.
        • et al.
        Relationship between hip and knee kinematics in athletic women during cutting maneuvers: a possible link to noncontact anterior cruciate ligament injury and prevention.
        J Strength Cond Res. 2009; 23: 2223
        • Hewett T.E.
        • Myer G.D.
        • Ford K.R.
        Anterior cruciate ligament injuries in female athletes. Part 1: mechanisms and risk factors.
        Am J Sports Med. 2006; 34: 299-311
        • Decker M.J.
        • Torry M.R.
        • Wyland D.J.
        • et al.
        Gender differences in lower extremity kinematics, kinetics and energy absorption during landing.
        Clin Biomech. 2003; 18: 662-669
        • Schmitz R.
        • Thompson T.
        • Riemann B.
        • et al.
        Gender differences in hip and knee kinematics and muscle preactivation strategies during single leg landings.
        J Athl Train. 2002; 37: S-20
        • Yu B.
        • Garrett W.E.
        Mechanisms of non-contact ACL injuries.
        Br J Sports Med. 2007; 41: i47-i51
        • McLean S.G.
        • Huang X.
        • van den Bogert A.J.
        Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury.
        Clin Biomech. 2005; 20: 863-870
        • Withrow T.J.
        • Huston L.J.
        • Wojtys E.M.
        • et al.
        The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing.
        Clin Biomech. 2006; 21: 977-983
        • Markolf K.L.
        • Burchfield D.M.
        • Shapiro M.M.
        • et al.
        Combined knee loading states that generate high anterior cruciate ligament forces.
        J Orthop Res. 1995; 13: 930-935
        • Oh Y.K.
        • Lipps D.B.
        • Ashton-Miller J.A.
        • et al.
        What strains the anterior cruciate ligament during a pivot landing?.
        Am J Sports Med. 2012; 40: 574-583
        • Shin C.S.
        • Chaudhari A.M.
        • Andriacchi T.P.
        Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone.
        Med Sci Sports Exerc. 2011; 43: 1484-1491
        • Griffin L.Y.
        • Agel J.
        • Albohm M.J.
        • et al.
        Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies.
        J Am Acad Orthop Surg. 2000; 8: 141-150
        • Brown T.
        • McLean S.G.
        • Palmieri-Smith R.M.
        Associations between lower limb muscle activation strategies and resultant multi-planar knee kinetics during single leg landings.
        J Sci Med Sport. 2014; 17: 408-413
        • Zebis M.K.
        • Andersen L.L.
        • Bencke J.
        • et al.
        Identification of athletes at future risk of anterior cruciate ligament ruptures by neuromuscular screening.
        Am J Sports Med. 2009; 37: 1967-1973
        • Cowling E.J.
        • Steele J.R.
        Is lower limb muscle synchrony during landing affected by gender? Implications for variations in ACL injury rates.
        J Electromyogr Kinesiol. 2001; 11: 263-268
        • Walsh M.
        • Boling M.C.
        • McGrath M.
        • et al.
        Lower extremity muscle activation and knee flexion during a jump-landing task.
        J Athl Train. 2012; 47: 406-413
        • Donnelly C.J.
        • Lloyd D.G.
        • Elliott B.C.
        • et al.
        Minimizing valgus knee loading during sidestepping: implications for ACL injury risk.
        J Biomech. 2012; 45: 1491-1497
        • Myer G.D.
        • Sugimoto D.
        • Thomas S.
        • et al.
        The influence of age on the effectiveness of neuromuscular training to reduce anterior cruciate ligament injury in female athletes a meta-analysis.
        Am J Sports Med. 2013; 41: 203-215
        • Terry M.
        Campbell’s operative orthopedics.
        JAMA. 2009; 301: 329-330
        • Benjaminse A.
        • Gokeler A.
        • van der Schans C.P.
        Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis.
        J Orthop Sports Phys Ther. 2006; 36: 267-288
        • Swain M.S.
        • Henschke N.
        • Kamper S.J.
        • et al.
        Accuracy of clinical tests in the diagnosis of anterior cruciate ligament injury: a systematic review.
        Chiropr Man Therap. 2014; 22: 25
        • Wagemakers H.P.
        • Luijsterburg P.A.
        • Boks S.S.
        • et al.
        Diagnostic accuracy of history taking and physical examination for assessing anterior cruciate ligament lesions of the knee in primary care.
        Arch Phys Med Rehabil. 2010; 91: 1452-1459
        • Noyes F.R.
        • Bassett R.
        • Grood E.
        • et al.
        Arthroscopy in acute traumatic hemarthrosis of the knee. Incidence of anterior cruciate tears and other injuries.
        J Bone Joint Surg Am. 1980; 62: 687-695
        • Lelli A.
        • Di Turi R.P.
        • Spenciner D.B.
        • et al.
        The “lever sign”: a new clinical test for the diagnosis of anterior cruciate ligament rupture.
        Knee Surg Sports Traumatol Arthrosc. 2016; 24: 2794-2797
        • Shea K.G.
        • Carey J.L.
        Management of anterior cruciate ligament injuries: evidence-based guideline.
        J Am Acad Orthop Surg. 2015; 23: e1-e5
        • Quinn S.
        • Brown T.
        • Szumowski J.
        Menisci of the knee: radial MR imaging correlated with arthroscopy in 259 patients.
        Radiology. 1992; 185: 577-580
        • Vahey T.
        • Broome D.
        • Kayes K.
        • et al.
        Acute and chronic tears of the anterior cruciate ligament: differential features at MR imaging.
        Radiology. 1991; 181: 251-253
        • Lee J.K.
        • Yao L.
        • Phelps C.T.
        • et al.
        Anterior cruciate ligament tears: MR imaging compared with arthroscopy and clinical tests.
        Radiology. 1988; 166: 861-864
        • Kosaka M.
        • Nakase J.
        • Toratani T.
        • et al.
        Oblique coronal and oblique sagittal MRI for diagnosis of anterior cruciate ligament tears and evaluation of anterior cruciate ligament remnant tissue.
        Knee. 2014; 21: 54-57
        • Cotten A.
        • Delfaut E.
        • Demondion X.
        • et al.
        MR imaging of the knee at 0.2 and 1.5 T: correlation with surgery.
        AJR Am J Roentgenol. 2000; 174: 1093-1097
        • Van Dyck P.
        • Vanhoenacker F.M.
        • Lambrecht V.
        • et al.
        Prospective comparison of 1.5 and 3.0-T MRI for evaluating the knee menisci and ACL.
        J Bone Joint Surg Am. 2013; 95: 916-924