ACL Graft Healing and Biologics

  • Bart Muller
    Affiliations
    Department of Orthopaedic Surgery, UPMC Center for Sports Medicine, University of Pittsburgh, 3200 South Water Street, Pittsburgh, PA 15213, USA

    Department of Orthopaedic Surgery, Orthopaedic Research Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
    Search for articles by this author
  • Karl F. Bowman Jr.
    Affiliations
    Department of Orthopaedic Surgery, UPMC Center for Sports Medicine, University of Pittsburgh, 3200 South Water Street, Pittsburgh, PA 15213, USA
    Search for articles by this author
  • Asheesh Bedi
    Correspondence
    Corresponding author. Department of Orthopaedic Surgery, University of Michigan, 24 Frank Lloyd Wright Drive, PO Box 0391, Ann Arbor, MI 48106-0391, USA.
    Affiliations
    Department of Orthopaedic Surgery, University of Michigan, 24 Frank Lloyd Wright Drive, PO Box 0391, Ann Arbor, MI 48106-0391, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Clinics in Sports Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fithian D.C.
        • Paxton E.W.
        • Stone M.L.
        • et al.
        Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee.
        Am J Sports Med. 2005; 33: 335-346
        • Bach B.R.
        • Levy M.E.
        • Bojchuk J.
        • et al.
        Single-incision endoscopic anterior cruciate ligament reconstruction using patellar tendon autograft. Minimum two-year follow-up evaluation.
        Am J Sports Med. 1998; 26: 30-40
        • Beynnon B.D.
        • Johnson R.J.
        • Fleming B.C.
        • et al.
        Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts. A prospective, randomized study.
        J Bone Joint Surg Am. 2002; 84-A: 1503-1513
        • Yasuda K.
        • Tanabe Y.
        • Kondo E.
        • et al.
        Anatomic double-bundle anterior cruciate ligament reconstruction.
        Arthroscopy. 2010; 26: S21-S34
        • Zelle B.A.
        • Beasley L.S.
        • Fu F.H.
        The envelope of function in anterior cruciate ligament injuries.
        Operat Tech Orthop. 2005; 15: 86-88
        • Ardern C.L.
        • Taylor N.F.
        • Feller J.A.
        • et al.
        Return-to-sport outcomes at 2 to 7 years after anterior cruciate ligament reconstruction surgery.
        Am J Sports Med. 2012; 40: 41-48
        • Kato Y.
        • Ingham S.J.
        • Kramer S.
        • et al.
        Effect of tunnel position for anatomic single-bundle ACL reconstruction on knee biomechanics in a porcine model.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 2-10
        • Xu Y.
        • Liu J.
        • Kramer S.
        • et al.
        Comparison of in situ forces and knee kinematics in anteromedial and high anteromedial bundle augmentation for partially ruptured anterior cruciate ligament.
        Am J Sports Med. 2011; 39: 272-278
        • Wright R.W.
        • Gill C.S.
        • Chen L.
        • et al.
        Outcome of revision anterior cruciate ligament reconstruction: a systematic review.
        J Bone Joint Surg Am. 2012; 94: 531-536
        • George M.S.
        • Dunn W.R.
        • Spindler K.P.
        Current concepts review: revision anterior cruciate ligament reconstruction.
        Am J Sports Med. 2006; 34: 2026-2037
        • Hamner D.L.
        • Brown C.H.
        • Steiner M.E.
        • et al.
        Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques.
        J Bone Joint Surg Am. 1999; 81: 549-557
        • Cooper D.E.
        • Deng X.H.
        • Burstein A.L.
        • et al.
        The strength of the central third patellar tendon graft. A biomechanical study.
        Am J Sports Med. 1993; 21 ([discussion: 823–4]): 818-823
        • Rodeo S.A.
        • Arnoczky S.P.
        • Torzilli P.A.
        • et al.
        Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog.
        J Bone Joint Surg Am. 1993; 75: 1795-1803
        • Whiston T.B.
        • Walmsley R.
        Some observations on the reactions of bone and tendon after tunnelling of bone and insertion of tendon.
        J Bone Joint Surg Am. 1960; 42-B: 377-386
        • Grana W.A.
        • Egle D.M.
        • Mahnken R.
        • et al.
        An analysis of autograft fixation after anterior cruciate ligament reconstruction in a rabbit model.
        Am J Sports Med. 1994; 22: 344-351
        • Panni A.S.
        • Milano G.
        • Lucania L.
        • et al.
        Graft healing after anterior cruciate ligament reconstruction in rabbits.
        Clin Orthop Relat Res. 1997; 343: 203-212
        • Scheffler S.U.
        • Unterhauser F.N.
        • Weiler A.
        Graft remodeling and ligamentization after cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2008; 16: 834-842
        • Ekdahl M.
        • Wang J.H.
        • Ronga M.
        • et al.
        Graft healing in anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2008; 16: 935-947
        • Bedi A.
        • Kawamura S.
        • Ying L.
        • et al.
        Differences in tendon graft healing between the intra-articular and extra-articular ends of a bone tunnel.
        HSS J. 2009; 5: 51-57
        • Papageorgiou C.D.
        • Ma C.B.
        • Abramowitch S.D.
        • et al.
        A multidisciplinary study of the healing of an intraarticular anterior cruciate ligament graft in a goat model.
        Am J Sports Med. 2001; 29: 620-626
        • Tomita F.
        • Yasuda K.
        • Mikami S.
        • et al.
        Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction.
        Arthroscopy. 2001; 17: 461-476
        • Gulotta L.V.
        • Rodeo S.A.
        Biology of autograft and allograft healing in anterior cruciate ligament reconstruction.
        Clin Sports Med. 2007; 26: 509-524
        • Gulotta L.V.
        • Wiznia D.
        • Cunningham M.
        • et al.
        What's new in orthopaedic research.
        J Bone Joint Surg Am. 2011; 93: 2136-2141
        • Sagarriga Visconti C.
        • Kavalkovich K.
        • Wu J.
        • et al.
        Biochemical analysis of collagens at the ligament-bone interface reveals presence of cartilage-specific collagens.
        Arch Biochem Biophys. 1996; 328: 135-142
        • Genin G.M.
        • Kent A.
        • Birman V.
        • et al.
        Functional grading of mineral and collagen in the attachment of tendon to bone.
        Biophys J. 2009; 97: 976-985
        • van Eck C.F.
        • Lesniak B.P.
        • Schreiber V.M.
        • et al.
        Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart.
        Arthroscopy. 2010; 6: 258-268
        • van Eck C.F.
        • Schreiber V.M.
        • Liu T.T.
        • et al.
        The anatomic approach to primary, revision and augmentation anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 1154-1163
        • Goradia V.K.
        • Rochat M.C.
        • Grana W.A.
        • et al.
        Tendon-to-bone healing of a semitendinosus tendon autograft used for ACL reconstruction in a sheep model.
        Am J Knee Surg. 2000; 13: 143-151
        • Kawamura S.
        • Ying L.
        • Kim H.J.
        • et al.
        Macrophages accumulate in the early phase of tendon-bone healing.
        J Orthop Res. 2005; 23: 1425-1432
        • Hays P.L.
        • Kawamura S.
        • Deng X.H.
        • et al.
        The role of macrophages in early healing of a tendon graft in a bone tunnel.
        J Bone Joint Surg Am. 2008; 90: 565-579
        • Shen W.
        • Li Y.
        • Zhu J.
        • et al.
        Interaction between macrophages, TGF-beta1, and the COX-2 pathway during the inflammatory phase of skeletal muscle healing after injury.
        J Cell Physiol. 2008; 214: 405-412
        • Cohen D.B.
        • Kawamura S.
        • Ehteshami J.R.
        • et al.
        Indomethacin and celecoxib impair rotator cuff tendon-to-bone healing.
        Am J Sports Med. 2006; 34: 362-369
        • Kanazawa T.
        • Soejima T.
        • Murakami H.
        • et al.
        An immunohistological study of the integration at the bone-tendon interface after reconstruction of the anterior cruciate ligament in rabbits.
        J Bone Joint Surg Am. 2006; 88: 682-687
        • Hantes M.E.
        • Mastrokalos D.S.
        • Yu J.
        • et al.
        The effect of early motion on tibial tunnel widening after anterior cruciate ligament replacement using hamstring tendon grafts.
        Arthroscopy. 2004; 20: 572-580
        • Rodeo S.A.
        • Kawamura S.
        • Kim H.J.
        • et al.
        Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion?.
        Am J Sports Med. 2006; 34: 1790-1800
        • Killian M.L.
        • Cavinatto L.
        • Galatz L.M.
        • et al.
        The role of mechanobiology in tendon healing.
        J Shoulder Elbow Surg. 2012; 21: 228-237
        • Bedi A.
        • Kovacevic D.
        • Fox A.J.S.
        • et al.
        Effect of early and delayed mechanical loading on tendon-to-bone healing after anterior cruciate ligament reconstruction.
        J Bone Joint Surg Am. 2010; 92: 2387-2401
        • Gardner K.
        • Arnoczky S.P.
        • Caballero O.
        • et al.
        The effect of stress-deprivation and cyclic loading on the TIMP/MMP ratio in tendon cells: an in vitro experimental study.
        Disabil Rehabil. 2008; 30: 1523-1529
        • Wen C.Y.
        • Qin L.
        • Lee K.M.
        • et al.
        Peri-graft bone mass and connectivity as predictors for the strength of tendon-to-bone attachment after anterior cruciate ligament reconstruction.
        Bone. 2009; 45: 545-552
        • Harner C.D.
        • Olson E.
        • Irrgang J.J.
        • et al.
        Allograft versus autograft anterior cruciate ligament reconstruction: 3- to 5-year outcome.
        Clin Orthop Relat Res. 1996; 324: 134-144
        • Cohen S.B.
        • Sekiya J.K.
        Allograft safety in anterior cruciate ligament reconstruction.
        Clin Sports Med. 2007; 26: 597-605
        • Ghodadra N.S.
        • Mall N.A.
        • Grumet R.
        • et al.
        Interval arthrometric comparison of anterior cruciate ligament reconstruction using bone-patellar tendon-bone autograft versus allograft: do grafts attenuate within the first year postoperatively?.
        Am J Sports Med. 2012; 40: 1347-1354
        • Barrett G.
        • Stokes D.
        • White M.
        Anterior cruciate ligament reconstruction in patients older than 40 years: allograft versus autograft patellar tendon.
        Am J Sports Med. 2005; 33: 1505-1512
        • Kaeding C.C.
        • Aros B.
        • Pedroza A.
        • et al.
        Allograft versus autograft anterior cruciate ligament reconstruction: predictors of failure from a MOON prospective longitudinal cohort.
        Sport Health. 2010; 3: 73-81
        • Min B.H.
        • Han M.S.
        • Woo J.I.
        • et al.
        The origin of cells that repopulate patellar tendons used for reconstructing anterior cruciate ligaments in man.
        J Bone Joint Surg Am. 2003; 85: 753-757
        • Nikolaou P.K.
        • Seaber A.V.
        • Glisson R.R.
        • et al.
        Anterior cruciate ligament allograft transplantation. Long-term function, histology, revascularization, and operative technique.
        Am J Sports Med. 1986; 14: 348-360
        • Jackson D.W.
        • Corsetti J.
        • Simon T.M.
        Biologic incorporation of allograft anterior cruciate ligament replacements.
        Clin Orthop Relat Res. 1996; 324: 126-133
        • Arnoczky S.P.
        • Warren R.F.
        • Ashlock M.A.
        Replacement of the anterior cruciate ligament using a patellar tendon allograft. An experimental study.
        J Bone Joint Surg Am. 1986; 68: 376-385
        • Scheffler S.U.
        • Gonnermann J.
        • Kamp J.
        • et al.
        Remodeling of ACL allografts is inhibited by peracetic acid sterilization.
        Clin Orthop Relat Res. 2008; 466: 1810-1818
        • Xiao Y.
        • Parry D.A.
        • Li H.
        • et al.
        Expression of extracellular matrix macromolecules around demineralized freeze-dried bone allografts.
        J Periodontol. 1996; 67: 1233-1244
        • Guo L.
        • Yang L.
        • Duan X.J.
        • et al.
        Anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft: comparison of autograft, fresh-frozen allograft, and γ-irradiated allograft.
        Arthroscopy. 2012; 28: 211-217
        • Curran A.R.
        • Adams D.J.
        • Gill J.L.
        • et al.
        The biomechanical effects of low-dose irradiation on bone-patellar tendon-bone allografts.
        Am J Sports Med. 2004; 32: 1131-1135
        • DesRosiers E.A.
        • Yahia L.
        • Rivard C.H.
        Proliferative and matrix synthesis response of canine anterior cruciate ligament fibroblasts submitted to combined growth factors.
        J Orthop Res. 1996; 14: 200-208
        • Chang J.
        • Most D.
        • Stelnicki E.
        • et al.
        Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: evidence for dual mechanisms of repair.
        Plast Reconstr Surg. 1997; 100: 937-944
        • Kashiwagi K.
        • Mochizuki Y.
        • Yasunaga Y.
        • et al.
        Effects of transforming growth factor-beta 1 on the early stages of healing of the Achilles tendon in a rat model.
        Scand J Plast Reconstr Surg Hand Surg. 2004; 38: 193-197
        • Sporn M.B.
        • Roberts A.B.
        • Wakefield L.M.
        • et al.
        Transforming growth factor-beta: biological function and chemical structure.
        Science. 1986; 233: 532-534
        • Kovacevic D.
        • Fox A.J.
        • Bedi A.
        • et al.
        Calcium-phosphate matrix with or without TGF-β3 improves tendon-bone healing after rotator cuff repair.
        Am J Sports Med. 2011; 39: 811-819
        • Wang Y.
        • Tang Z.
        • Xue R.
        • et al.
        TGF-β1 promoted MMP-2 mediated wound healing of anterior cruciate ligament fibroblasts through NF-κB.
        Connect Tissue Res. 2011; 52: 218-225
        • Campbell B.H.
        • Agarwal C.
        • Wang J.H.
        TGF-beta1, TGF-beta3, and PGE(2) regulate contraction of human patellar tendon fibroblasts.
        Biomech Model Mechanobiol. 2004; 2: 239-245
        • Lories R.J.
        • Luyten F.P.
        Bone morphogenetic protein signaling in joint homeostasis and disease.
        Cytokine Growth Factor Rev. 2005; 16: 287-298
        • Axelrad T.W.
        • Einhorn T.A.
        Bone morphogenetic proteins in orthopaedic surgery.
        Cytokine Growth Factor Rev. 2009; 20: 481-488
        • Kohno T.
        • Ishibashi Y.
        • Tsuda E.
        • et al.
        Immunohistochemical demonstration of growth factors at the tendon-bone interface in anterior cruciate ligament reconstruction using a rabbit model.
        J Orthop Sci. 2007; 12: 67-73
        • Wang C.J.
        • Weng L.H.
        • Hsu S.L.
        • et al.
        pCMV-BMP-2-transfected cell-mediated gene therapy in anterior cruciate ligament reconstruction in rabbits.
        Arthroscopy. 2010; 26: 968-976
        • Martinek V.
        • Latterman C.
        • Usas A.
        • et al.
        Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study.
        J Bone Joint Surg Am. 2002; 84-A: 1123-1131
        • Rodeo S.A.
        • Suzuki K.
        • Deng X.H.
        • et al.
        Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel.
        Am J Sports Med. 1999; 27: 476-488
        • Lou J.
        • Tu Y.
        • Burns M.
        • et al.
        BMP-12 gene transfer augmentation of lacerated tendon repair.
        J Orthop Res. 2001; 19: 1199-1202
        • Aspenberg P.
        • Forslund C.
        Bone morphogenetic proteins and tendon repair.
        Scand J Med Sci Sports. 2000; 10: 372-375
        • Steenfos H.H.
        • Jansson J.O.
        Gene expression of insulin-like growth factor-I and IGF-I receptor during wound healing in rats.
        Eur J Surg. 1992; 158: 327-331
        • Gartner M.H.
        • Benson J.D.
        • Caldwell M.D.
        Insulin-like growth factors I and II expression in the healing wound.
        J Surg Res. 1992; 52: 389-394
        • Gillery P.
        • Leperre A.
        • Maquart F.X.
        • et al.
        Insulin-like growth factor-I (IGF-I) stimulates protein synthesis and collagen gene expression in monolayer and lattice cultures of fibroblasts.
        J Cell Physiol. 1992; 152: 389-396
        • Abrahamsson S.O.
        • Lohmander S.
        Differential effects of insulin-like growth factor-I on matrix and DNA synthesis in various regions and types of rabbit tendons.
        J Orthop Res. 1996; 14: 370-376
        • Kurtz C.A.
        • Loebig T.G.
        • Anderson D.D.
        • et al.
        Insulin-like growth factor I accelerates functional recovery from Achilles tendon injury in a rat model.
        Am J Sports Med. 1999; 27: 363-369
        • Dines J.S.
        • Weber L.
        • Razzano P.
        • et al.
        The effect of growth differentiation factor-5-coated sutures on tendon repair in a rat model.
        J Shoulder Elbow Surg. 2007; 16: S215-S221
        • Tsuzaki M.
        • Guyton G.
        • Garrett W.
        • et al.
        IL-1 beta induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells.
        J Orthop Res. 2003; 21: 256-264
        • Archambault J.
        • Tsuzaki M.
        • Herzog W.
        • et al.
        Stretch and interleukin-1beta induce matrix metalloproteinases in rabbit tendon cells in vitro.
        J Orthop Res. 2002; 20: 36-39
        • Bedi A.
        • Fox A.J.
        • Kovacevic D.
        • et al.
        Doxycycline-mediated inhibition of matrix metalloproteinases improves healing after rotator cuff repair.
        Am J Sports Med. 2010; 38: 308-317
        • Bedi A.
        • Kovacevic D.
        • Hettrich C.
        • et al.
        The effect of matrix metalloproteinase inhibition on tendon-to-bone healing in a rotator cuff repair model.
        J Shoulder Elbow Surg. 2010; 19: 384-391
        • Kuang G.M.
        • Yau W.P.
        • Lu W.W.
        • et al.
        Osteointegration of soft tissue grafts within the bone tunnels in anterior cruciate ligament reconstruction can be enhanced.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 1038-1051
        • Jackson J.R.
        • Minton J.A.
        • Ho M.L.
        • et al.
        Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1beta.
        J Rheumatol. 1997; 24: 1253-1259
        • Zhang F.
        • Liu H.
        • Stile F.
        • et al.
        Effect of vascular endothelial growth factor on rat Achilles tendon healing.
        Plast Reconstr Surg. 2003; 112: 1613-1619
        • Bidder M.
        • Towler D.A.
        • Gelberman R.H.
        • et al.
        Expression of mRNA for vascular endothelial growth factor at the repair site of healing canine flexor tendon.
        J Orthop Res. 2000; 18: 247-252
        • Deuel T.F.
        • Huang J.S.
        Platelet-derived growth factor. Structure, function, and roles in normal and transformed cells.
        J Clin Invest. 1984; 74: 669-676
        • Lee J.
        • Harwood F.L.
        • Akeson W.H.
        • et al.
        Growth factor expression in healing rabbit medial collateral and anterior cruciate ligaments.
        Iowa Orthop J. 1998; 18: 19-25
        • Kuroda R.
        • Kurosaka M.
        • Yoshiya S.
        • et al.
        Localization of growth factors in the reconstructed anterior cruciate ligament: immunohistological study in dogs.
        Knee Surg Sports Traumatol Arthrosc. 2000; 8: 120-126
        • Li F.
        • Jia H.
        • Yu C.
        ACL reconstruction in a rabbit model using irradiated Achilles allograft seeded with mesenchymal stem cells or PDGF-B gene-transfected mesenchymal stem cells.
        Knee Surg Sports Traumatol Arthrosc. 2007; 15: 1219-1227
        • Murray M.M.
        • Spindler K.P.
        • Devin C.
        • et al.
        Use of a collagen-platelet rich plasma scaffold to stimulate healing of a central defect in the canine ACL.
        J Orthop Res. 2006; 24: 820-830
        • Spindler K.P.
        • Murray M.M.
        • Devin C.
        • et al.
        The central ACL defect as a model for failure of intra-articular healing.
        J Orthop Res. 2006; 24: 401-406
        • Murray M.M.
        • Spindler K.P.
        • Ballard P.
        • et al.
        Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold.
        J Orthop Res. 2007; 25: 1007-1017
        • Joshi S.M.
        • Mastrangelo A.N.
        • Magarian E.M.
        • et al.
        Collagen-platelet composite enhances biomechanical and histologic healing of the porcine anterior cruciate ligament.
        Am J Sports Med. 2009; 37: 2401-2410
        • Murray M.M.
        • Magarian E.M.
        • Harrison S.L.
        • et al.
        The effect of skeletal maturity on functional healing of the anterior cruciate ligament.
        J Bone Joint Surg Am. 2010; 92: 2039-2049
        • Magarian E.M.
        • Fleming B.C.
        • Harrison S.L.
        • et al.
        Delay of 2 or 6 weeks adversely affects the functional outcome of augmented primary repair of the porcine anterior cruciate ligament.
        Am J Sports Med. 2010; 38: 2528-2534
        • Mastrangelo A.N.
        • Haus B.M.
        • Vavken P.
        • et al.
        Immature animals have higher cellular density in the healing anterior cruciate ligament than adolescent or adult animals.
        J Orthop Res. 2010; 28: 1100-1106
        • Wong M.W.
        • Qin L.
        • Tai J.K.
        • et al.
        Engineered allogeneic chondrocyte pellet for reconstruction of fibrocartilage zone at bone-tendon junction–a preliminary histological observation.
        J Biomed Mater Res B Appl Biomater. 2004; 70: 362-367
        • Spalazzi J.P.
        • Doty S.B.
        • Moffat K.L.
        • et al.
        Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering.
        Tissue Eng. 2006; 12: 3497-3508
        • Spalazzi J.P.
        • Dagher E.
        • Doty S.B.
        • et al.
        In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration.
        J Biomed Mater Res A. 2008; 86: 1-12
        • Ma J.
        • Smietana M.J.
        • Kostrominova T.Y.
        • et al.
        Three-dimensional engineered bone-ligament-bone constructs for anterior cruciate ligament replacement.
        Tissue Eng Part A. 2012; 18: 103-116
        • Richmond J.C.
        • Manseau C.J.
        • Patz R.
        • et al.
        Anterior cruciate reconstruction using a Dacron ligament prosthesis. A long-term study.
        Am J Sports Med. 1992; 20: 24-28
        • Richmond J.C.
        • Weitzel P.P.
        Bioresorbable scaffolds for anterior cruciate ligament reconstruction: do we need an off-the-shelf ACL substitute?.
        Sports Med Arthrosc. 2010; 18: 40-42
        • Frank C.B.
        • Jackson D.W.
        The science of reconstruction of the anterior cruciate ligament.
        J Bone Joint Surg Am. 1997; 79: 1556-1576
        • Altman G.H.
        • Horan R.L.
        • Weitzel P.
        • et al.
        The use of long-term bioresorbable scaffolds for anterior cruciate ligament repair.
        J Am Acad Orthop Surg. 2008; 16: 177-187