Anterior Cruciate Ligament Healing and Advances in Imaging

Published:October 08, 2012DOI:https://doi.org/10.1016/j.csm.2012.08.003

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Clinics in Sports Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Choi J.Y.
        • Ha J.K.
        • Kim Y.W.
        • et al.
        Relationships among tendon regeneration on MRI, flexor strength, and functional performance after anterior cruciate ligament reconstruction with hamstring autograft.
        Am J Sports Med. 2012; 40: 152-162
        • Frobell R.B.
        • Le Graverand M.P.
        • Buck R.
        • et al.
        The acutely ACL injured knee assessed by MRI: changes in joint fluid, bone marrow lesions, and cartilage during the first year.
        Osteoarthritis Cartilage. 2009; 17: 161-167
        • White L.M.
        • Kramer J.
        • Recht M.P.
        MR imaging evaluation of the postoperative knee: ligaments, menisci, and articular cartilage.
        Skeletal Radiol. 2005; 34: 431-452
        • Langford J.L.
        • Webster K.E.
        • Feller J.A.
        A prospective longitudinal study to assess psychological changes following anterior cruciate ligament reconstruction surgery.
        Br J Sports Med. 2009; 43: 377-378
        • Nakayama Y.
        • Shirai Y.
        • Narita T.
        • et al.
        Knee functions and a return to sports activity in competitive athletes following anterior cruciate ligament reconstruction.
        J Nihon Med Sch. 2000; 67: 172-176
        • Amiel D.
        • Kleiner J.B.
        • Roux R.D.
        • et al.
        The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon.
        J Orthop Res. 1986; 4: 162-172
        • Arnoczky S.P.
        • Tarvin G.B.
        • Marshall J.L.
        Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog.
        J Bone Joint Surg Am. 1982; 64: 217-224
        • Abe S.
        • Kurosaka M.
        • Iguchi T.
        • et al.
        Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction.
        Arthroscopy. 1993; 9: 394-405
        • Claes S.
        • Verdonk P.
        • Forsyth R.
        • et al.
        The “ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature.
        Am J Sports Med. 2011; 39: 2476-2483
        • Falconiero R.P.
        • DiStefano V.J.
        • Cook T.M.
        Revascularization and ligamentization of autogenous anterior cruciate ligament grafts in humans.
        Arthroscopy. 1998; 14: 197-205
        • Rougraff B.T.
        • Shelbourne K.D.
        Early histologic appearance of human patellar tendon autografts used for anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 1999; 7: 9-14
        • Sanchez M.
        • Anitua E.
        • Azofra J.
        • et al.
        Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology.
        Arthroscopy. 2010; 26: 470-480
        • Ntoulia A.
        • Papadopoulou F.
        • Ristanis S.
        • et al.
        Revascularization process of the bone-patellar tendon-bone autograft evaluated by contrast-enhanced magnetic resonance imaging 6 and 12 months after anterior cruciate ligament reconstruction.
        Am J Sports Med. 2011; 39: 1478-1486
        • Gohil S.
        • Annear P.O.
        • Breidahl W.
        Anterior cruciate ligament reconstruction using autologous double hamstrings: a comparison of standard versus minimal debridement techniques using MRI to assess revascularisation. A randomised prospective study with a one-year follow-up.
        J Bone Joint Surg Br. 2007; 89: 1165-1171
        • Muramatsu K.
        • Hachiya Y.
        • Izawa H.
        Serial evaluation of human anterior cruciate ligament grafts by contrast-enhanced magnetic resonance imaging: comparison of allografts and autografts.
        Arthroscopy. 2008; 24: 1038-1044
        • Weiler A.
        • Peters G.
        • Maurer J.
        • et al.
        Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep.
        Am J Sports Med. 2001; 29: 751-761
        • Fleming B.C.
        • Vajapeyam S.
        • Connolly S.A.
        • et al.
        The use of magnetic resonance imaging to predict ACL graft structural properties.
        J Biomech. 2011; 44: 2843-2846
        • Hoher J.
        • Moller H.D.
        • Fu F.H.
        Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction?.
        Knee Surg Sports Traumatol Arthrosc. 1998; 6: 231-240
        • L'Insalata J.C.
        • Klatt B.
        • Fu F.H.
        • et al.
        Tunnel expansion following anterior cruciate ligament reconstruction: a comparison of hamstring and patellar tendon autografts.
        Knee Surg Sports Traumatol Arthrosc. 1997; 5: 234-238
        • Lajtai G.
        • Schmiedhuber G.
        • Unger F.
        • et al.
        Bone tunnel remodeling at the site of biodegradable interference screws used for anterior cruciate ligament reconstruction: 5-year follow-up.
        Arthroscopy. 2001; 17: 597-602
        • Fahey M.
        • Indelicato P.A.
        Bone tunnel enlargement after anterior cruciate ligament replacement.
        Am J Sports Med. 1994; 22: 410-414
        • Matsumoto T.
        • Kubo S.
        • Sasaki K.
        • et al.
        Acceleration of tendon-bone healing of anterior cruciate ligament graft using autologous ruptured tissue.
        Am J Sports Med. 2012; 40: 1296-1302
        • Sasaki K.
        • Kuroda R.
        • Ishida K.
        • et al.
        Enhancement of tendon-bone osteointegration of anterior cruciate ligament graft using granulocyte colony-stimulating factor.
        Am J Sports Med. 2008; 36: 1519-1527
        • Webster K.E.
        • Chiu J.J.
        • Feller J.A.
        Impact of measurement error in the analysis of bone tunnel enlargement after anterior cruciate ligament reconstruction.
        Am J Sports Med. 2005; 33: 1680-1687
        • Clatworthy M.G.
        • Annear P.
        • Bulow J.U.
        • et al.
        Tunnel widening in anterior cruciate ligament reconstruction: a prospective evaluation of hamstring and patella tendon grafts.
        Knee Surg Sports Traumatol Arthrosc. 1999; 7: 138-145
        • Ma C.B.
        • Kawamura S.
        • Deng X.H.
        • et al.
        Bone morphogenetic proteins-signaling plays a role in tendon-to-bone healing: a study of rhBMP-2 and noggin.
        Am J Sports Med. 2007; 35: 597-604
        • Ferretti M.
        • Ekdahl M.
        • Shen W.
        • et al.
        Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study.
        Arthroscopy. 2007; 23: 1218-1225
        • Gulotta L.V.
        • Kovacevic D.
        • Ying L.
        • et al.
        Augmentation of tendon-to-bone healing with a magnesium-based bone adhesive.
        Am J Sports Med. 2008; 36: 1290-1297